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Abstract. This work presents a hybrid model for Cabernet Sauvignon (CS) red wine-making that combines 
mechanistic and data-driven approaches to optimize the fermentation process and improve the quality of red 
wine. The model incorporates two sub-units representing the interaction between alcoholic fermentation and 
phenolic extraction, considering factors such as temperature, products addition, draining time, and must 
composition. To develop and validate the model, a database of 270 industrial CS fermentation from 2017-2021 
harvest seasons was collected. The models were calibrated using experimental data, achieving an average R2 of 
0.94 for fermentation kinetics model and 45% and 80.9% test accuracy for tannins and anthocyanins predictors, 
respectively. A multi-objective dynamic optimization problem was formulated and solved to find fermentation 
operation conditions that optimize simultaneously phenolic quality, process costs and productivity. A similar 
distribution of the Pareto fronts were obtained for varietal and premium wines. Finally, these tools were packed 
in a digital platform for practical use in industrial cellars. The models generate the predictions and recipes 
prescription for each fermentation tank when the pre fermentative juice is analyzed. As a result, it is obtained 
useful information for wine decision-making like maceration length and wine phenolic composition at least 
five days in advance. 

1 Introduction  
By incorporating Industry 4.0 technologies into 
winemaking, the sector is revolutionized by integrating 
physical production and operations with cutting-edge 
digital tools such as the Internet of Things (IoT), cloud 
computing, data analytics, and artificial intelligence (AI). 
This fusion gives rise to intelligent factories outfitted 
with state-of-the-art sensors, comprehensive software, 
and robotics that gather and interpret data for better 
decision-making [1,2]. As a result, wineries can 
streamline production processes, boost efficiency, and 
increase wine quality, fostering a more sustainable, 
efficient, and lucrative industry [2]. 

In this study, we report the application of Industry 4.0 
technologies to the industrial-scale production of red 
wine. The red wine fermentation process implicates an 
interplay of alcoholic fermentation and skin maceration, 
which may involve seeds and occasionally stems. 
Maceration is a physicochemical process that promotes 
the extraction of compounds from grape skins [3,4], 
while alcoholic fermentation, driven by yeast, is a 
biological process that converts sugars into ethanol and 
carbon dioxide. This transformation enriches the wine's 

complexity through the generation of secondary 
metabolites [4,5]. 

Numerous traditional techniques have been employed 
to improve the extraction of grape constituents and 
fermentation in winemaking, emphasizing red wine's 
color and phenolic compounds. Pre-fermentation 
approaches include cold soaking, carbonic maceration, 
enzyme addition, thermovinification, flash détente, and 
accentuated cut edges (ACE) [4,6]. During fermentation, 
managing the cap is critical for promoting the extraction 
of grape components, particularly polyphenols, from the 
solid cap into the liquid must [4,7]. This is accomplished 
by regularly contacting the cap with the liquid, typically 
using pump-over or punch-down methods. Maceration 
duration and temperature also significantly influence the 
extraction process. Anthocyanins and tannins are 
extracted from the skins in the initial stages, whereas seed 
tannins extraction prevails in the latter stages as ethanol 
levels rise [3,8,9]. Maintaining temperature control is 
crucial for achieving consistent fermentation and 
extracting polyphenols [7,10-12]. Micro-oxygenation can 
enhance wine quality during fermentation by intensifying 
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the red hue, stabilizing the wine aroma, and simulating 
barrel aging [4,9,13].  

Mathematical models for process simulation have 
become increasingly necessary in enhancing the quality 
of red wine [4,9,14,15]. These models can be categorized 
into two primary types: mechanistic and non-mechanistic. 
Mechanistic models depict processes grounded in 
physical, chemical, and biological principles, while non-
mechanistic models rely on data-driven approaches [16]. 
Furthermore, hybrid models, which integrate the benefits 
of both mechanistic and non-mechanistic models, 
demonstrate potential for utilization in process control 
and optimization [16].  

Recent advancements in mechanistic modeling have 
yielded promising tools for simulating red wine 
production. Examples of contemporary alternatives 
include using Genome-Scale Metabolic Models 
(GEMMs) or expanding traditional dynamic models with 
secondary aroma metabolism [17,18]. Additionally, 
models that combine fermentation and extraction kinetics 
of phenolic compounds during maceration have exhibited 
promise in large-scale red wine fermentation operations 
[10,19,20].  

By incorporating IoT infrastructure, wineries can now 
gather and utilize data to make informed decisions 
regarding wine phenolic composition and maceration 
length several days ahead [5,17,21]. Combining 
predictive models with in-line sensing and real-time data 
acquisition enables the development of automated 
process control systems for optimized fermentation and 
extraction [5,17,21]. Effective control strategies take into 
account temperature, mechanical operations, and aeration 
to enhance phenolic compound extraction and 
fermentation kinetics. This technological integration 
contributes to winemaking efficiency, facilitating the 
production of high-quality red wine with greater 
consistency, predictability, and cost-effectiveness 
[2,3,9,19,21].  

Nonetheless, optimizing the control of alcoholic 
fermentation in winemaking presents a formidable 
challenge. The control parameters of both processes, 
fermentation, and maceration, differ, necessitating the 
identification of compatible conditions for managing 
them simultaneously [9,20]. Commercial winemaking 
aims to optimize factors such as sugar exhaustion, 
fermentation duration, and the energy needed to regulate 
fermentation temperature, which can be difficult to 
quantify [4,9,17,21,22]. Consequently, future 
advancements in this field will continue to enhance the 
precision and accessibility of Industry 4.0 tools to refine 
winemaking processes further.  

This article illustrates how mathematical models were 
applied to optimize industrial winemaking processes. We 
developed a hybrid model to optimize Cabernet 
Sauvignon red winemaking recipes by integrating first-
principles modeling and machine learning techniques, 
balancing time, cost, and phenolic composition. The 
model comprises two interconnected sub-units 
representing the interplay between alcoholic fermentation 
and phenolic extraction.  

We trained and validated the models using a database 
of 270 industrial Cabernet Sauvignon fermentations, 

subsequently incorporating them into a digital platform 
for practical implementation in industrial wineries. The 
models generate tailored predictions and recipes for each 
fermentation tank by analyzing the pre-fermentative 
juice. This optimization process ultimately streamlines 
the winemaking timeline, reduces costs, and refines the 
phenolic composition of the wine. 

2 Materials and methods  

2.1 Machine learning model construction 

Data-driven models were developed to predict draining 
point anthocyanin and tannin concentration. For this, we 
employed KDD as the processing pipeline considering 
the nature of data used for model construction [23,24]. 

2.1.1 Industrial process database 

A database was developed from 270 Cabernet Sauvignon 
industrial winemaking processes during the 2017-2021 
harvest seasons. Information in this dataset included 
chemical and phenolic composition of grapes and wines, 
oenological product applications, monitoring data 
including temperature and density, total weight of 
processed grapes, fermentation tank volume, and 
maceration times. The database included seven wineries 
and Cabernet Sauvignon grapes from 5 valleys in Chile. 
Samples were collected in two points during the 
maceration process; pre-fermentative must and wine at 
the draining point. The chemical analysis for pre-
fermentative must included density, Brix, pH, total 
acidity, free SO2, total SO2, and YAN. For must and 
wine, total anthocyanins and tannins were measured by 
UV/VIS spectrophotometry (Cary 60, Agilent 
Technologies). The anthocyanins measurement 
methodology consisted of mixing a 10 ml sample with  
1 ml of a 0.1% w/v HCl in 95% ethanol solution and  
20 ml of 2% w/v HCl distilled water solution. The mixed 
solution is then split into two test tubes with 10 ml each, 
adding 4 ml of a 15% w/v Na2S2O5 solution to the first 
tube, and 4 ml of distilled water to the second tube [25]. 
Then, the solutions were left for 20 minutes before 
reading their absorbance at 520 nm against a water blank. 
The concentration of total tannins was measured using a 
precipitation method by a methylcellulose reaction and 
reading the absorbance at 280 nm in a UV/VIS 
spectrophotometer [26]. A curve with eight calibration 
points was used for sample analysis. 

2.1.2 Transformation and Data Mining 

The engineering variable process was used to transform, 
select, and adapt variables from the database to be used in 
training machine learning (ML) algorithms. For example, 
must volume was estimated using grape destemming 
industrial yield, and then oenological product data such 
as yeast, diammonium phosphate (DAP), among others, 
were transformed from amount into concentration using 
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the must volume. Subsequently, relevant patterns, 
relationships, and insights hidden in the converted data 
were determined using Python's Scikit-Learn package. A 
standard scaler was applied for numerical normalization, 
principal component analysis (PCA) was applied for 
reducing data dimension and feature extraction. A 
Random Forest algorithm was applied for identifying 
relevant features and variables to ensure model 
interpretability, considering this classifier's exceptional 
performance and robustness against overfitting [27,28]. 

2.1.3 Benchmark and Model selection 

Several machine learning algorithms included in Python's 
Scikit-Learn package were trained for ML model 
development. Algorithms included in this study were 
Kernel Ridge, Support Vector Machine, Random Forest 
Regression, Gradient Boosting, Stochastic Gradient 
Descent, K-Nearest Neighbors, and Gaussian Processes 
(varying in kernels). 

Hyperparameters of ML models were optimized using 
nested cross-validation, achieving accurate predictions of 
draining-point total anthocyanins and tannins 
concentrations while overcoming bias in performance 
evaluation during model selection [29]. Model 
performance was assessed using standard metrics such as 
mean-squared error and R-squared, and the data was split 
80% for training and 20% for validation. The best-
performing model, with the highest accuracy and 
reliability, was selected based on the validation results. 

2.2 Mechanistic model of alcoholic fermentation 

A model for simulating alcoholic fermentation was 
developed using a procedure for robust model structure 
selection and parameter estimation combined with 
fermentation kinetics data generated through 
experimental fermentation processes [30].  

2.2.1 Experimental design for fermentation  
kinetics 

Six red wine fermentations were performed using 
Cabernet Sauvignon grapes from various producers in 
Chile's Maule region. The calibration of the wine 
fermentation model involved both laboratory-scale and 
pilot-scale experiments. Following a standardized 
commercial winery protocol, the grapes were crushed to 
obtain juice and grape solids. The pre-fermentative juice 
underwent adjustments for sugar content, pH, and yeast 
assimilable nitrogen (YAN) through dilution and adding 
specific compounds. Inoculation was done using the 
commercial Saccharomyces cerevisiae yeast strain 
(Maurivin PDM), and DAP was added during 
fermentation. 

The laboratory-scale experiments were performed in a 
5 L reactor with temperature control set at 26 °C using a 
heating/cooling jacket. Pumping-over applied thrice daily 
for two minutes enhanced pomace extraction and nutrient 
distribution. The pilot-scale experiments were carried out 
in a 1000 L cubic reactor with temperature control set at 

26 °C using a heating/cooling coil, employing a similar 
pumping-over system and parameters from the 
laboratory-scale experiments, scaled up accordingly. 
Sampling was based on density reduction, with samples 
collected at 10-15 g/L intervals. 

The samples were analyzed using an automatic 
spectrophotometric analyzer (Y15, BioSystems) 
specifically designed for commercial wineries. The 
analyzer measured key oenological metabolites, including 
glucose, fructose, and yeast assimilable nitrogen (YAN) 
concentrations. Sugar consumption (°Brix and density) 
was measured using a portable densimeter (DMA35, 
Anton Paar). Additionally, must and cap temperatures 
were recorded each minute using PT1000 sensors. 

2.2.2 Modeling and parameter estimation 

A systematic model reparameterization procedure was 
applied to generate reliable, robust, and flexible model 
structures from lab-scale data, which can then be 
transferred to large-scale systems [30]. The model 
structures were developed using data from a 5 L 
laboratory-scale bioreactor, and a 1000 L pilot-scale 
fermenter was used to validate the derived model 
structures. 

A priori and a posteriori regression diagnostics were 
used to assess each model structure's parameter 
identifiability, significance, sensitivity, and fitting 
performance [31]. Multi-criteria decision-making 
methods were then utilized to select a reduced set of 
models with desirable characteristics. Statistical indices 
were used to further analyze the selected model structures 
with additional calibration and validation data, resulting 
in a single, fully calibrated, and robust model for 
simulation that can fit data from different experiments of 
the same or similar system. 

The obtained model structure displayed a good 
predictive capacity, which includes free parameters that 
are influential, uncorrelated, and significantly different 
from zero [30]. The proposed procedure was applied to 
two models taken from the literature [32,33]. The 
resulting model was calibrated and validated using data 
gathered from laboratory-scale and pilot-scale systems. 
For each case, calibration and validation sets were 
defined using a random set of 4 training and two 
validation datasets. 

2.3 Hybrid model 

2.3.1 Hybrid model structure 

A hybrid model scheme for optimizing red wine alcoholic 
fermentations is shown in Fig. 1. The model combines 
the previously described mechanistic and data-driven 
models to comprehensively understand fermentation 
kinetics and tannin/anthocyanin extraction during red 
wine fermentation. The data-driven model takes as input 
the operating parameters of fermentation and chemical 
analysis of the red grape must and predicts the final 
concentration of tannins and anthocyanins achieved 
through this process. 
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On the other hand, the mechanistic model describes 
the synthesis and consumption of the main metabolites 
involved in alcoholic fermentation, considering the 
effects of operational parameters such as temperature and 
the addition of nitrogen, the limiting substrate. 

The hybrid model was designed to optimize the 
fermentation process by considering variables shared 
between both models, such as temperature, nutrient 
dosing, and total fermentation time. Shared variables are 
used to interconnect predictions between models, 
allowing for a coordinated approach to the optimization 
process. 

The combination of the mechanistic and data-driven 
models provided a comprehensive and accurate 
understanding of the fermentation process, allowing the 
optimization of key parameters to achieve the desired 
wine quality. 

2.3.2 Modeling and parameter estimation 

The multi-objective cost function considers three 
objectives: quality maximization, process costs 
minimization and productivity maximization. Quality was 
quantified as the phenolic composition at the draining 
point, including tannins and anthocyanins. The total 
phenolic composition is important for the sensory 
attributes and health benefits of red wine, contributing to 
its color, taste, and antioxidant properties [4]. 

Process cost was quantified as the sum of dynamic 
diammonium phosphate (DAP) additions throughout 
fermentation. DAP addition is justified as it is a key 
source nutrient for yeast growth and fermentation 
performance, ensuring optimal fermentation outcomes 
[20]. 

Productivity is given by the time before reaching the 
draining point of maceration. The time until draining 
point is important since it influences the fermentation 
length and the overall wine quality, achieving a balance 

between flavor development and avoiding negative 
sensory outcomes [19,21]. 

The multi-objective optimization problem was 
formulated as follows: 

                    minimize J1 = -(A(X) + T(X))   (1a) 

               minimize J2 = ∑DAPadd,i                        (1b) 

      minimize J3 = tf                               (1c) 

     subject to: 

      ẋ = f(xi,yi,ui,θ,tf )                        (1d) 

               A = f(tf ,X)                        (1e) 

      T = f(tf ,X)                        (1f) 

       g(xi,yi,ui,θ) = 0                        (1g) 

where xi, yi, ui, θ, and tf correspond to state variables, 
algebraic variables, control variables, parameters, and the 
process time for the mechanistic model, respectively. A 
and T correspond to the data-driven models for 
anthocyanins and tannins, respectively, and tf is the 
process time for maceration that matches with the 
fermentation time. The dynamic inputs (ui) correspond to 
the temperature profile and DAP additions.  

X corresponds to the optimized variables included in 
each recipe and used as input for both mechanistic and/or 
machine learning models (fA and fT for anthocyanin and 
tannin prediction models, respectively). These variables 
include Free-K, Oak powder, Tartaric acid, SO2 addition 
dosing, draining time, and fermentation kinetic model 
inputs (ui) that are shared between the models (dynamic 
temperature and DAP addition). 

A single-shooting method with a total of i = 1...n = 50 
finite elements was used for dynamic optimization [34]. 
Operational and regulatory constraints (gi) involved in 

Figure 1. Modular view of the hybrid model for wine alcoholic fermentation and maceration proposed in this article. 
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industrial winery processing were considered. 
Specifically, total DAP additions were restricted to a 
maximum of 40 g/hL, and temperature shifting between 
simulation steps was restricted to a maximum value of  
4 °C. 

3 Results and Discussion   

3.1 Machine learning models 

Machine learning algorithms were trained to predict the 
concentration of total anthocyanins and total tannins at 
the draining point of wine alcoholic fermentation. Table 1 
shows the results of the training and validation for each 
machine learning algorithm using the mean absolute error 
(MAE) as the scoring metric. 

For the total anthocyanins concentration predictor, the 
Gradient Boosting algorithm achieved the best accuracy 
for both the training and test datasets, with accuracies of 
99.99% and 80.86%, respectively. 

Regarding the total tannins predictor, most of the 
algorithms exhibited overfitting, meaning they performed 
well on the training dataset but had poor accuracy on the 
test dataset. However, the Support Vector Machine 
algorithm showed a better balance between predictions 
for the test dataset (45% accuracy) and lower overfitting 
(a smaller difference between training and test yields). 
Thus, the Support Vector Machine algorithm was 
selected for the tannins predictor. 

To further enhance the tannins predictor, it is 
recommended to include new relevant features related to 
the extraction process and consider the addition of new 
observation data. These improvements can help improve 
the accuracy and generalization ability of the model. 

3.2 Mechanistic model for alcoholic fermentation 

The multi-criteria approach presented in [30] was used to 
select, reparametrize, and calibrate the most suitable 
mechanistic model for simulating wine alcoholic 
fermentation from a list of two models [32,33]. A 
bootstrapping cross-calibration scheme was employed 

using a fermentation kinetics training dataset, where 
subsets of different combinations of experiments were 
formed. The squared-error function was defined based on 
simulated states and measured values for each experiment 
in a subset. The global error function for parameter 
calibration was then defined as the sum of errors 
calculated for all subsets. In our example, bootstrap 
parameter estimates were obtained using enhanced 
Scatter Search (eSS) for global search with fmincon as 
the local solver [36]. 

The model selection process involved evaluating 
various criteria to ensure robustness and performance in 
different dimensions. The evaluated criteria included 
goodness-of-fit, identifiability, and sensitivity. For the 
goodness-of-fit criterion, the corrected Akaike 
Information Criterion (AICc) was utilized to assess the 
model's parsimony and goodness-of-fit to the calibration 
set. Lower AICc values indicated better model 
performance. The identifiability criterion measured the 
overall uncertainty in a model structure and was 
evaluated using the Mean of the Normalized Confidence 
Intervals (MNCI). Smaller MNCI values indicated better 
overall significance of the model structure. Finally, the 
sensitivity criterion focused on the model's parametric 
sensitivity, and the global parametric sensitivity score 
(GSS) represented the cumulative sensitivity across all 
state variables and parameters. Different multi-criteria 
decision-making (MCDM) scenarios were explored by 
assigning different weights to each criterion, and various 
MCDM methods were applied to select the best model 
structure for each scenario, balancing among these 
criteria according to [30]. 

The alcoholic fermentation models underwent 
evaluation using independent experimental validation 
data from two experimental scales. The evaluation 
process involved the computation of performance indices, 
including a global performance index (GPI) while 
analyzing residual normality. The GPI measured the 
overall performance of each model structure based on 
adjusted determination coefficients (Radj) for measured 
model states. Based on the performance indices, the best-
overall model structure (BOMS) was determined for each 
evaluated model. Robustness indicators, as well as GPI 

Model 
Average Error / % Accuracy 

Training tannins Test tannins Training anthocyanins Test anthocyanins 
Kernel ridge 178.6 / 37.9% 277.6 / 46.6% 65.3 / 86.1% 129.8 / 76.2% 
Support vector machine 87.1 / 78.8% 277.6 / 45%  24 / 95.7% 135.5 / 75.5% 
Random forest 75.4 / 74.2 288.9 / 41.5% 35.5 / 92.1% 109.2 / 79.3% 
Gradient boosting 0 / 99.9% 290.3 / 44.3% 0 / 99.9% 109.1 / 80.9%      
Stochastic gradient descent 217.4 / 24.1% 276.5 / 42.6% 116.8 / 74%            116.6 / 76.6% 
K-nearest neighbors 0 / 100% 288 / 42.3%   0 / 100% 115.1 / 77.6%      
Gaussian processes (RBF) 0 / 99.9% 435.8 / 35.3% 0 / 99.9%              211.8 / 62%        
Gaussian processes (Matern) 0 / 99.9% 335.6 / 45.7% 0 / 99.9%              148.9 / 73.3%   
Gaussian processes (ExpSineSquared) 0 / 99.9%        404.6 / 36.4% 0 / 99.9%              197.2 / 65%        
Gaussian processes (Rational quadratic) 2.84 / 99.9%     280 / 43.07% 1.49 / 99.9%              115.9 / 77.4% 

Table 1. Accuracy and average error obtained for each modeling approach in the construction of total tannin and anthocyanin machine 
learning models. 
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for original and reparametrized BOMS, are displayed in 
Table 2. The BOMS exhibited significant sensitivity to 
calibration, good predictive capacity, and minimal bias. It 
demonstrated the highest averaged GPI and the highest 
number of normally distributed uncorrelated residuals 
among the evaluated model structures. 

Table 2. Robustness and goodness-of-fit results achieved 
through the reparametrized and calibrated mechanistic models. 

Description 
Regression diagnostics 

AICc MNCI GSS Av. GPI 

C
ol

em
an

 Original (Lab.) -220.1 0.53 47.4 0.97 
BOMS (Lab.) -274.2 0.15 74.5 0.97 

Original (Pilot) -208.1 0.69 31.5 0.90 
BOMS (Pilot) -250.7 0.22 37.7 0.87 

Z
en

te
no

 Original (Lab.) -185.6 0.35 12.7 0.94 
BOMS (Lab.) -241.1 0.03 23.3 0.96 

Original (Pilot) -182.1 0.14 8.6 0.81 
BOMS (Pilot) -202.7 0.12 16.5 0.85 

 
Overall, the selected and calibrated mechanistic 

model provided a robust framework for simulating wine 
alcoholic fermentation, capturing the complexities of the 
process and yielding accurate predictions. Figure 2 
presents a graphical demonstration of this, displaying a 
comparison between mechanistic modeling approaches 
used to predict fermentation kinetics over one of the 
pilot-scale testing experiments and overall displaying a 
high predictive capacity (averaged GPI of above 0.95 and 
0.85 for laboratory and pilot-scale BOMS, respectively). 

3.3 Mechanistic model for alcoholic fermentation 

The aim to develop and applied the hybrid model (Fig. 1) 
is to establish a knowledge-based framework for 

designing optimal red wine fermentation and maceration 
recipes. This considers the achievement of objectives 
related to maceration and fermentation process 
considering operational and wine quality constraints as 
well the process productivity.  

To explore the above, we simulated maceration and 
fermentation conditions corresponding to a varietal and 
premium wines using data obtained from Viña Concha y 
Toro. These wines differ significantly in grape chemical 
composition and the fermentation operation management. 
Therefore, it is expected that the optimal operation 
conditions for these wines be different. Table 3 shows the 
initial conditions for varietal and premium wines. The 
initial phenolic composition of must (DO280, color 
index, total anthocyanins and tannins) at the filling point 
was much higher for premium wines than varietal wines. 
The fermentation initial conditions were the same for 
both scenarios. 

The results from multi-objective dynamic 
optimization are shown in Fig. 3, obtaining a set of Pareto 
efficient solutions which trade-off the quality, process 
cost and productivity objectives. Each point represents a 
specific fermentation operation condition, considering 
specific values for the decision variables according to the 
production objective functions. Analyzing the distribution 
fermentation operation conditions among the three 
production objectives, a strong trade-off between total 
phenolics and draining point time is identified, where, as 
suggested in literature, shorter macerations lead to lower 
final polyphenol concentration [19]. Additionally, a 
smaller effect of DAP additions is identified, with higher 
additions being related to a slight increase in final 
phenolics concentration while also displaying an 
insignificant effect on draining-point time. Another 
interesting observation we observed from Fig. 3 is the 
shared behavior among the premium and varietal wines 
simulated in this study, both displaying the same patterns 
discussed previously. 

Figure 2. Simulation results obtained through the reparametrized and calibrated mechanistic models in pilot-scale test experiment 1. 
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Figure 3. Pareto Front obtained through the hybrid model in the 
different winery scenarios. 

 
 
For further analysis, a solution of the Pareto-set was 

selected for both the varietal and premium wines. 
Figure 4 and Table 3 show the optimal fermentation 
conditions and evaluated objective function values. 
Significant differences are observed among varietal and 
premium wine recipes and their outputs in each process. 
For example, a lower use of tartaric acid and higher use 
Free-K are predicted for varietal wine processing, which 
is adequate in this type of processes given that these 
products are substitutes among themselves with Free-K 
being a lower cost option. However, abnormal quantities 
are observed in Free-K additions, which typically move 
among the thousand liters in most operations. This 
displays an opportunity to enhance machine-learning 
models and optimization, as pH affecting wine acidity 
should be considered in the quality maximization 
objective to effectively use this variable. 

 
 

Figure 4. Bar plot of product addition in selected optimal wine 
recipes predicted through the hybrid model. 

 
Objective function values observed for each optimal 

solution display smaller maceration time with a 
consequently lower phenolic extraction and higher DAP 
additions for the varietal wine. Conversely, premium 
wine obtained longer maceration with higher phenolic 
extraction and lower DAP additions. This matches 
industrial protocols observed in varietal wineries, as 
grapes processed in these typically arrive with a high 
concentration of tannins related with negative sensorial 
attributes. Therefore, high fermentation rates and short 
macerations are seeked by winemakers in these scenario. 
Again, this is the reverse situation of premium wineries, 
where extended macerations with controlled extraction 
procedures (e.g., pumping-over and air-mixing protocols) 
are searched. This relates to the desire for extracting 
valuable phenolic compounds present in higher 
concentration in premium grapes pomace, at a reduced 

Maceration conditions 
 

D280 Color Index Filling-point 
anthocyanins 

Filling-point 
tannins Volume 

Varietal 9.29 1.47 34.13 mg/L 40 mg/L 40124 L 
Premium 18.71 4.55 108.37 mg/L 240 mg/L 32200 L 
Fermentation 
conditions Biomass YAN Sugar Density  

Varietal/Premium 0.23 g/L 120 mg/L 216.5 g/L 1098.4 g/L  
Pareto optimal recipe Free-K Oak Powder Tartaric acid SO2  
Varietal 7.02 L 0.01 g/hL 50.21 g/hL 4.19 g/hL  
Premium 2.44 L 0.01 g/hL 85.77 g/hL 1.56 g/hL  
Objective function 
values 

Total 
Phenolics 

Total DAP 
addition Draining point   

Varietal 1098.51 mg/L 28.81 g/hL 4.56 days   
Premium 1582.85 mg/L 12.46 g/hL 9.81 days   

Table 3. Optimal recipes and objective function values from selected example recipes for each winery scenario.  
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risk of spoiling wine because of the lower concentration 
of off-flavor compounds.  

Figure 5 displays fermentation kinetics for each 
selected wine recipe, which are observed to vary 
significantly in function of the temperature and DAP 
addition protocols. Similar timing is observed among the 
processes analyzed for each winery, where most DAP is 
added during the start of fermentation and near reaching 
density 1050 g/L. Moreover, DAP dosing varies 
significantly between the varietal and premium winery 
(28.81 vs 12.46 g/hL, respectively). This coincides with 
the argument that varietal wines are seeked to be 
fermented faster to minimize extraction of off-flavor 
related phenolics during maceration. In this instance, 
optimization is not coupled with drying requirements of 
the fermented wines. However, winemakers tend to seek 
to match fermentation drying-point with maceration the 
draining-point in order to simplify further processing. 

 

 
 
Figure 5. Fermentation kinetics and optimal inputs related to 
selected optimal recipes for each winery scenario. 

 
Overall, the hybrid model and its optimal wine recipes 

have significant practical implications for winemakers in 
both varietal and premium wineries. They present 

potential to enhance wine quality by considering multiple 
objectives, such as total phenolic composition, DAP 
addition, and fermentation duration. This enables 
winemakers to achieve desired wine characteristics while 
efficiently managing resources. This modeling approach 
serves as a valuable tool for decision-making processes, 
allowing winemakers to set multiple objectives and 
optimize the wine production process accordingly. By 
visualizing trade-offs through the generated Pareto front, 
winemakers can make informed decisions based on data-
driven insights and select the recipe that best aligns with 
their priorities during the harvest season.  

Future research directions can focus on incorporating 
additional process variables, such as yeast strains and 
grape maturity parameters, to enhance the comprehensive 
understanding of the winemaking process. Refining the 
machine learning models by improving accuracy and 
robustness would further enhance the reliability of the 
optimal wine recipes. Additionally, validating the 
optimized recipes through experimental trials would 
provide practical confirmation of their performance in 
terms of sensory attributes, chemical composition, and 
consumer acceptance. By addressing these future research 
directions, the hybrid model can continue to evolve and 
offer valuable insights, advancements, and practical 
applications in optimizing red wine fermentation and 
maceration for the wine industry and winemakers. 

4 Conclusion 
In this study, we developed a hybrid model for red wine-
making that integrates and combines mechanistic and 
data-driven approaches to optimize fermentation recipes 
and improve the phenolic composition of red wine. 

A comprehensive database of multiple-scale Cabernet 
Sauvignon fermentation from 2017-2021 harvest season 
was collected. Robust fermentation kinetic model was 
generated with high performance and predictors for 
anthocyanins and tannins with 45% and 80.9% accuracy, 
respectively. 

By incorporating common variables for fermentation 
and macerations such as temperature, time, and mixture 
volume, the hybrid model enabled to optimize 
fermentation operation conditions that simultaneously 
improved wine quality, process cost and productivity. 
The models predictions and recipe prescriptions present 
the potential to be generated in advance for each 
fermentation tank, providing valuable information for 
wine decision-making in industrial cellars. 

The integration of Industry 4.0 technologies, such as 
IoT, analytics, AI, and machine learning, has 
revolutionized the winemaking industry, enabling the 
development of smart factories and improving production 
processes, efficiency, and wine quality. Our hybrid model 
exemplifies the power of these technologies in enhancing 
red wine production and decision-making. 

Future advancements in this field will focus on further 
improving the accuracy and accessibility of these tools, 
making them more widely available to wineries of all 
scales. The combination of mechanistic and data-driven 
models provides a promising approach for optimizing red 
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wine fermentation and extraction processes, leading to 
consistent, predictable, and cost-effective production of 
high-quality red wine. Overall, the hybrid model 
contributes to the ongoing digital transformation of the 
winemaking industry and paves the way for a more 
sustainable, efficient, and profitable future for red wine 
production. 
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